Techniques for solving $2^{\text {nd }}$ or higher order linear ODEs

Technique	Used to find solutions of homogeneous or non-homogeneous DEs (or both)? (If non-homogeneous, any constraints on forcing term ?)	Used to find solutions of constant or variable coefficients DEs (or both)? (If variable coefficients, any constraints on coefficients?)	What information must you know before using the method?
Superposition 4.1	non-homogeneous forcing term must be linear combination of forcing terms with known solutions for DE	both constant \& variable coefficients	solutions for homogeneous DE and non-homogeneous DE with simpler forcing terms
Reduction of Order 4.2			
Characteristic Polynomial 4.3	homogeneous	constant coefficients	N/A
Undetermined Coefficients 4.4			
Variation of Parameters 4.6			
Indicial Equation 4.7			

